skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gutekunst, Samuel C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 17, 2026
  2. Facet-defining inequalities of the symmetric traveling salesman problem (TSP) polytope play a prominent role in both polyhedral TSP research and state-of-the-art TSP solvers. In this paper, we introduce a new class of facet-defining inequalities, the circlet inequalities. These inequalities were first conjectured in Gutekunst and Williamson [Gutekunst SC, Williamson DP (2019) Characterizing the integrality gap of the subtour LP for the circulant traveling salesman problem. SIAM J. Discrete Math. 33(4):2452–2478] when studying the circulant TSP, and they provide a bridge between polyhedral TSP research and number-theoretic investigations of Hamiltonian cycles stemming from a conjecture from Marco Buratti in 2007. The circlet inequalities exhibit circulant symmetry by placing the same weight on all edges of a given length; our main proof exploits this symmetry to prove the validity of the circlet inequalities. We then show that the circlet inequalities are facet-defining and compute their strength following Goemans [Goemans MX (1995) Worst-case comparison of valid inequalities for the TSP. Math. Programming 69:335–349]; they achieve the same worst case strength as the similarly circulant crown inequalities of Naddef and Rinaldi [Naddef D, Rinaldi G (1992) The crown inequalities for the symmetric traveling salesman polytope. Math. Oper. Res. 17(2):308–326] but are generally stronger. Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program [Grant DGE-1650441] and by the National Science Foundation Division of Computing and Communications Foundations [Grant CCF-1908517]. 
    more » « less
  3. null (Ed.)
    The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmus test for future SDP relaxations of the TSP. 
    more » « less
  4. null (Ed.)
    We study the connection between triangulations of a type $$A$$ root polytope and the resonance arrangement, a hyperplane arrangement that shows up in a surprising number of contexts. Despite an elementary definition for the resonance arrangement, the number of resonance chambers has only been computed up to the $n=8$ dimensional case. We focus on data structures for labeling chambers, such as sign vectors and sets of alternating trees, with an aim at better understanding the structure of the resonance arrangement, and, in particular, enumerating its chambers. Along the way, we make connections with similar (and similarly difficult) enumeration questions. With the root polytope viewpoint, we relate resonance chambers to the chambers of polynomiality of the Kostant partition function. With the hyperplane viewpoint, we clarify the connections between resonance chambers and threshold functions. In particular, we show that the base-2 logarithm of the number of resonance chambers is asymptotically $n^2$. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)